Journal article
Plastic and Reconstructive Surgery, Global Open, 2022
APA
Click to copy
Sequeira, S. B., Grainger, M., Mitchell, A. M., Anderson, C. C., Geed, S., Lum, P., & Giladi, A. (2022). Machine Learning Improves Functional Upper Extremity Use Capture in Distal Radius Fracture Patients. Plastic and Reconstructive Surgery, Global Open.
Chicago/Turabian
Click to copy
Sequeira, Sean B., Megan Grainger, A. M. Mitchell, Cassidy C. Anderson, Shashwati Geed, P. Lum, and A. Giladi. “Machine Learning Improves Functional Upper Extremity Use Capture in Distal Radius Fracture Patients.” Plastic and Reconstructive Surgery, Global Open (2022).
MLA
Click to copy
Sequeira, Sean B., et al. “Machine Learning Improves Functional Upper Extremity Use Capture in Distal Radius Fracture Patients.” Plastic and Reconstructive Surgery, Global Open, 2022.
BibTeX Click to copy
@article{sean2022a,
title = {Machine Learning Improves Functional Upper Extremity Use Capture in Distal Radius Fracture Patients},
year = {2022},
journal = {Plastic and Reconstructive Surgery, Global Open},
author = {Sequeira, Sean B. and Grainger, Megan and Mitchell, A. M. and Anderson, Cassidy C. and Geed, Shashwati and Lum, P. and Giladi, A.}
}
Summary: Current outcome measures, including strength/range of motion testing, patient-reported outcomes (PROs), and motor skill testing, may provide inadequate granularity in reflecting functional upper extremity (UE) use after distal radius fracture (DRF) repair. Accelerometry analysis also has shortcomings, namely, an inability to differentiate functional versus nonfunctional movements. The objective of this study was to evaluate the accuracy of machine learning (ML) analyses in capturing UE functional movements based on accelerometry data for patients after DRF repair. In this prospective study, six patients were enrolled 2–6 weeks after DRF open reduction and internal fixation (ORIF). They all performed standardized activities while wearing a wrist accelerometer, and the data were analyzed by an ML algorithm. These activities were also videotaped and evaluated by visual inspection. Our novel ML algorithm was able to predict from accelerometry data whether the limb was performing a movement rated as functional, with accuracy of 90.4% ± 3.6% for within-subject modeling and 79.8% ± 8.9% accuracy for between-subject modeling. The application of ML algorithms to accelerometry data allowed for capture of functional UE activity in patients after DRF open reduction and internal fixation and accurately predicts functional UE use. Such analyses could improve our understanding of recovery and enhance routine postoperative rehabilitation in DRF patients.